skip to main content


Search for: All records

Creators/Authors contains: "Lawrence, Zachary"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The relationship of upper tropospheric jet variability to El Niño / Southern Oscillation (ENSO) in reanalysis datasets is analyzed for 1979–2018, revealing robust regional and seasonal variability. Tropical jets associated with monsoons and the Walker circulation are weaker and the zonal mean subtropical jet shifts equatorward in both hemispheres during El Niño, consistent with previous findings. Regional and seasonal variations are analyzed separately for subtropical and polar jets. The subtropical jet shifts poleward during El Niño over the NH eastern Pacific in DJF, and in some SH regions in MAMand SON. Subtropical jet altitudes increase during El Niño, with significant changes in the zonal mean in the NH and during summer/fall in the SH. Though zonal mean polar jet correlations with ENSO are rarely significant, robust regional/seasonal changes occur: The SH polar jet shifts equatorward during El Niño over Asia and the western Pacific in DJF, and poleward over the eastern Pacific in JJA and SON. Polar jets are weaker (stronger) during El Niño in the western (eastern) hemisphere, especially in the SH; conversely, subtropical jets are stronger (weaker) in the western (eastern) hemisphere during El Niño in winter and spring; these opposing changes, along with an anticorrelation between subtropical and polar jet windspeed, reinforce subtropical/polar jet strength differences during El Niño, and suggest ENSO-related covariability of the jets. ENSO-related jet latitude, altitude, and windspeed changes can reach 4(3)°, 0.6(0.3) km, and 6(3) ms −1 , respectively, for the subtropical (polar) jets. 
    more » « less
  2. null (Ed.)
    Abstract This study offers an overview of the low-frequency (i.e., monthly to seasonal) evolution, dynamics, predictability, and surface impacts of a rare Southern Hemisphere (SH) stratospheric warming that occurred in austral spring 2019. Between late August and mid-September 2019, the stratospheric circumpolar westerly jet weakened rapidly, and Antarctic stratospheric temperatures rose dramatically. The deceleration of the vortex at 10 hPa was as drastic as that of the first-ever-observed major sudden stratospheric warming in the SH during 2002, while the mean Antarctic warming over the course of spring 2019 broke the previous record of 2002 by ∼50% in the midstratosphere. This event was preceded by a poleward shift of the SH polar night jet in the uppermost stratosphere in early winter, which was then followed by record-strong planetary wave-1 activity propagating upward from the troposphere in August that acted to dramatically weaken the polar vortex throughout the depth of the stratosphere. The weakened vortex winds and elevated temperatures moved downward to the surface from mid-October to December, promoting a record strong swing of the southern annular mode (SAM) to its negative phase. This record-negative SAM appeared to be a primary driver of the extreme hot and dry conditions over subtropical eastern Australia that accompanied the severe wildfires that occurred in late spring 2019. State-of-the-art dynamical seasonal forecast systems skillfully predicted the significant vortex weakening of spring 2019 and subsequent development of negative SAM from as early as late July. 
    more » « less
  3. Abstract

    Projected changes in the Northern Hemisphere stratospheric polar vortex are analyzed using Climate Model Intercomparison Project Phase 6 experiments. Previous studies showed that projections of the wintertime zonally averaged polar vortex strength diverge widely between climate models with no agreement on the sign of change, and that this uncertainty contributes to the regional climate change uncertainty. Here, we show that there remains large uncertainty in the projected strength of the polar vortex in experiments with global warming levels ranging from moderate (SSP245 runs) to large (Abrupt‐4xCO2runs), and that the uncertainty maximizes in winter. Partitioning of the uncertainty in wintertime polar vortex strength projections reveals that, by the end of the 21st century, model uncertainty contributes half of the total uncertainty, with scenario uncertainty contributing only 10%. Regression analysis shows that up to 20% of the intermodel spread in projected precipitation over the Iberian Peninsula and northwestern US, and 20%–30% in near‐surface temperature over western US and northern Eurasian, can be associated with the spread in vortex strength projections after accounting for global warming. While changes in the magnitude and sign of the zonally averaged vortex strength are uncertain, most models (>95%) predict an eastward shift of the vortex by 8°–20° degrees in longitude relative to its historical location with the magnitude of the shift increasing for larger global warming levels. There is less agreement across models on a latitudinal shift, whose direction and magnitude correlate with changes in the zonally averaged vortex strength so that vortex weakening/strengthening corresponds to a southward/poleward shift.

     
    more » « less